High-side driver with current sense analog feedback for automotive applications

Features WS7140S is single channel high-side drivers with current ٠ Operating voltage range: 4.5V to 28V sense analog feedback for automotive applications, the devices Load current limitation are designed to drive 12 V automotive grounded loads through Output short-circuit protection a 3 V and 5 V. Standby current <1.0µA WS7140S integrates advanced protective functions such as On-state resistance Typ=145mΩ load current limitation, overload active management by power Thermal shutdown indication limitation and overtemperature shutdown. OFF-state open-load detection A dedicated multifunction multiplexed analog output pin Overvoltage clamp delivers sophisticated diagnostic functions including high Undervoltage protection ٠ precision proportional load current sense, in addition to the Multiplexed analog feedback of load current with high precision ٠ detection of overload and short circuit to ground, short to V_{CC} proportional current mirror and OFF-state open-load. RoHS compliant and lead free A sense enable pin allows OFF-state diagnosis to be disabled during the module low power mode as well as external sense

Application

- All types of automotive resistive, inductive and capacitive loads
- Specially intended for automotive signal lamps

Typical Application Circuit

General Description

resistor sharing among similar devices.

WINSEMI

WS7140S is available in ESOP-8L package.

High-side driver with current sense analog feedback for automotive applications

Ordering Information

Package	Top Mark	Part No.
8-Pin ESOP-8L, Pb-free	WS7140S	WS7140S
6-Fill LSOF-6L, FB-liee	XXYMXX	W37 1403

Pin Configuration Top view INPUT [NC 8 1 SEn [2 L 7 NC I **EPAD** I GND [OUTPUT 3 I 6 L I CS [5 VCC 4 ESOP-8L

Pin Descr	ription	
Pin Name	Pin NO.	Pin Description
INPUT	1	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.
SEn	2	Active high compatible with 3 V and 5 V CMOS outputs pin, it enables the CS diagnostic pin.
GND	3	Ground connection. Must be reverse battery protected by an external diode / resistor network.
CS	4	Multiplexed analog sense output pin; it delivers a current proportional to the load current.
V _{cc}	5	Battery connection.
OUTPUT	6	Power outputs.
NC	7/8	No connect.
EPAD	EPAD	Exposed pad for thermal dissipation enhancement. Must be soldered on the large ground plane on the PCB to increase the thermal dissipation. The pad must be connected to GND electrically.

High-side driver with current sense analog feedback for automotive applications

Table 1. Suggested connections for unused and not connected pins

Connection / pin	CS	OUTPUT	INPUT	SEn
Floating	Not allowed	х	х	х
To ground	Through 1K resistor	Not allowed	Through 15K resistor	Through 15K resistor

Note1: X do not care.

Current and Voltage Conventions

High-side driver with current sense analog feedback for automotive applications

Note3: Stressing the device above the rating listed in Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

ESD Susceptibility ^(Note4)

-			
Symbol	Parameter	Values	Unit
$V_{ESD(HBM)}{}^{3)}$	ESD Susceptibility all Pins (HBM)	±2	kV
V _{ESD(HBM)_} OUT	ESD Susceptibility OUT vs GND and $V_{\mbox{cc}}$ connected (HBM)	±4	kV
V _{ESD(CDM)} ⁴⁾	ESD Susceptibility all Pins (CDM)	\pm 500	V
Vesd(cdm)_crn	ESD Susceptibility Corner Pins (CDM) (pins 1, 4, 5, 8)	±750	V

Note4

1) Not subject to production test - specified by design.

2) Maximum digital input voltage to be considered for Latch-Up tests: 5.5 V.

3) ESD susceptibility, Human Body Model "HBM", according to AEC Q100-002.

4) ESD susceptibility, Charged Device Model "CDM", according to AEC Q100-011.

Thermal Resistance (Note5)

Symbol	Parameter	Value	Unit
ALT	Junction-to-Ambient Thermal Resistance	43	°C/W

Note5: According to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner

copper layer.

WINSEMI

High-side driver with current sense analog feedback for automotive applications

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

High-side driver with current sense analog feedback for automotive applications

Electrical Characteristics (Note6)

Power section							
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Operating supply voltage	Vcc		4.5	13	28	V	
Under voltage shutdown	V _{USD}				4.5	V	
Under voltage shutdown reset	V _{USDReset}				5	V	
Under voltage shutdown hysteresis	V _{USDhyst}			0.3		V	
		I_{OUT} =1A, T _j = 25°C		145			
On-state resistance	R _{on}	I _{OUT} =1A, T _j =150°C			280	mΩ	
		I_{OUT} =1A, V_{CC} =4.5V, T_j = 25°C			240		
Nominal load current	I _{L(NOM)}	T _A =25℃		2.0		А	
Nominal load current at $T_A {=} 85^\circ\!\!\!\mathrm{C}$	I _{L(NOM)_85}	T _A =85℃, T _j < 150℃		1.8		А	
Inverse Current Capability	I _{L(INV)}	V_{CC} < V_{OUT} , V_{IN} =5V, T_A =25 $^{\circ}$ C		2.0		А	
V eleme veltare	N	I _S =20 mA, 25℃ < T _j < 150℃	35	42	48	- V	
V _{cc} clamp voltage	V _{CLAMP}	I _S =20 mA, T _j =-40°C	33				
Sumply surrent in standby $at V = 12 V$		$V_{CC} = 13V, V_{IN} = V_{OUT} = V_{SEn} = 0V, T_j = 25^{\circ}C$			1.0	μA	
Supply current in standby at V_{CC} = 13 V	I _{STBY}	V_{CC} =13V, V_{IN} = V_{OUT} = V_{SEn} =0V, T_j = 125°C			3.0	μA	
Standby mode blanking time	t _{D_STBY}	V_{CC} =13V, V_{IN} = V_{OUT} =0V, V_{SEn} =5 V to 0 V	100	450	900	us	
Supply current	I _{S(ON)}	V_{CC} =13V, V_{SEn} =0V, V_{IN} =5V, I_{OUT} =0A		3	6	mA	
Control stage current consumption in ON state	I _{GND(ON)}	V _{CC} =13V, V _{SEn} =5V, V _{IN} =5V, I _{OUT} =1A			6	mA	
05	I _{L(off)}	V _{IN} =V _{OUT} =0V, V _{CC} =13V, T _j =25°C	0	0.05	0.5	μA	
Off-state output current at V_{CC} =13V		V _{IN} =V _{OUT} =0V, V _{CC} =13V, T _j =125°C	0		3.0	μA	
Output - V_{CC} diode voltage at T_j =150°C	VF	I _{OUT} =-0.2A, T _j =150°C			0.9	V	
Switching/V _{cc} = 13 V, -40°C < T	_i < 150°C, unle	ess otherwise specified					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Turn-on delay time at T _j = 25°C	T _{d (on)}		10	35	120	us	
Turn-off delay time at T _j = 25°C	T _{d (off)}	R _L =13Ω	10	60	120	us	
Turn-on voltage slope at T _j = 25°C	(dV _{OUT} /dt) _{on}		0.05	0.2	0.7		
Turn-off voltage slope at $T_j = 25^{\circ}C$	(dV _{OUT} /dt) _{off}	R _L =13Ω	0.05	0.45	0.7	V/us	
Differential pulse skew(t _{PHL} - t _{PLH})	t _{skew}	R∟=13Ω	-60	-10	60	us	
Logic input (IN, SEn)						1	
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Logic input low level voltage	VL				0.9	V	
Levelevel le vie in nut evenent	IL.	V _{INL} =0.9V	0.5			uA	
Low level logic input current				1	1	1	
Logic input high level voltage	V _H		2.1		6.0	V	
	V _H	V _{INH} =2.1V	2.1		6.0 12	V uA	

A0

High-side driver with current sense analog feedback for automotive applications

Protections (7 V < V _{cc} < 18 V, -40	0°C < T _j < 15	0°C)					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
D0 shad size it seems t		V _{cc} =13V	4	6	10		
DC short circuit current	I _{LIMH}	4.5V < V _{CC} < 16V			10	А	
Short circuit current during thermal cycling	I _{LIML}	V_{CC} =13V, T_{R} < T_{j} < T_{TSD}		2			
Shutdown temperature	T _{TSD}		150	175	200	°C	
Thermal hysteresis	T _{HYST}			20		°C	
Dynamic temperature	$\Delta T_{\text{J}_{\text{SD}}}$	T _j = -40°C, V _{CC} =13V		60		°C	
Current limit thermal hysteresis	T _R			40		ĉ	
Turne off and and the second second		I _{OUT} =1A, L= 6mH, T _j = -40°C	V _{cc} -33				
Turn-off output voltage clamp	V_{DEMAG}	I_{OUT} =1A, L= 6mH, T _j =25°C to 150°C	V _{cc} -35	V _{CC} -38	V _{CC} -43	V	
Current sense / 7 V < V _{cc} < 18 V,	-40°C < T _j <	: 150℃					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
		V _{SEn} =0V, I _{SENSE} =1mA		-15			
Current sense clamp voltage	$V_{SENSE_{CL}}$	V _{SEn} =0V, I _{SENSE} = -1mA		7		V	
Current sense characteristics		1					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
I _{OUT} /I _{SENSE}	K ₁	I _{OUT} =0.15A, V _{SEn} =5V	-50%	530	+50%		
I _{OUT} /I _{SENSE}	K ₂	I _{OUT} =0.7A, V _{SEn} =5V	-15%	520	+15%		
I _{OUT} /I _{SENSE}	K ₃	I _{OUT} =1A, V _{SEn} =5V	-10%	520	+10%		
I _{OUT} /I _{SENSE}	K4	I _{OUT} =2A, V _{SEn} =5V	-8%	520	+8%		
		CS disabled: V _{SEn} =0V	0		0.5		
		CS disabled: -1V <v<sub>SENSE<5V</v<sub>	-0.5		3	uA	
Current sense leakage current	SENSE0	CS enabled: V _{SEn} =5V, V _{IN} = 5V, I _{OUT} =0A	0		100		
		CS enabled: V _{SEn} =5V, V _{IN} = 0V, I _{OUT} =0A	0		2		
Output voltage for CS shutdown	V _{OUT_MSD}	V _{SEn} =5V, R _{SENSE} =2.7K, V _{IN} =5V, I _{OUT} =1A		5		V	
CS saturation voltage	V	$V_{CC}=7V, R_{SENSE}=2.7K, V_{SEn}=5V, V_{IN}=5V,$	5			V	
CS saturation voltage	V_{SENSE_SAT}	I _{OUT} =2A, Τ _j =150 °C	5			v	
CS saturation current	I _{SENSE_SAT}	$V_{CC}=7V$, $V_{SENSE}=4V$, $V_{IN}=5V$, $V_{SEn}=5V$,	4			mA	
		$T_j = 150^{\circ}C$ V _{CC} =7V, V _{SENSE} =4V, V _{IN} =5V, V _{SEn} =5V,					
Output saturation current	I _{OUT_SAT}	$V_{CC} = 7 V$, $V_{SENSE} = 4 V$, $V_{IN} = 5 V$, $V_{SEn} = 5 V$, $T_i = 150 \text{ °C}$	2.2			А	
OFF-state diagnostic			I	L	<u> </u>		
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
OFF-state open load voltage detection threshold	V _{OL}	V _{SEn} =5V, V _{IN} =0V	2	3	4	V	
OFF-state output sink current	I _{L(off2)}	$V_{IN} = 0 V, V_{OUT} = V_{OL}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-450	-200	-80	uA	
OFF-state diagnostic delay time from		V_{SEn} =5V, V_{IN} = 5V to 0 V, V_{OUT} =4V,	405	0.50	700		
falling edge of INPUT	t _{DSTKON}	I _{OUT} =0A	100	350	700	us	

WS7140S Product Description High-side driver with current sense analog feedback for automotive applications

Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn	t _{D_OL_V}	V_{IN} =0V, V_{OUT} =4V, V_{SEn} = 0V to 5V			150	us
OFF-state diagnostic delay time from rising edge of V_{OUT}	t _{D_VOL}	V_{SEn} =5V, V_{IN} =0V, V_{OUT} =0V to 4V		5	30	us
Fault diagnostic feedback						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current sense output voltage in fault condition	V _{SENSEH}	V _{CC} =13V, R _{SENSE} =1K, V _{IN} =0V, V _{SEn} = 5V, I _{OUT} =0A, V _{OUT} =4V	5.0	6.0	6.6	V
Current sense output current in fault condition	I _{SENSEH}	V _{CC} =13V, V _{SENSE} =5V	10	20	30	mA
Current sense timings						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current sense settling time from rising	t _{DSENSE1H}	V _{IN} =5V, V _{SEn} =0V to 5V,				
edge of SEn	DSENSEIH	$R_{SENSE}=1K, R_{L}=13\Omega$			60	us
edge of SEn Current sense disable delay time from falling edge of SEn	t _{DSENSE1L}	$\label{eq:Rsense} \begin{split} & R_{SENSE} = 1K, \ R_{L} = 13\Omega \\ & V_{IN} = 5V, \ V_{SEn} = 5V \text{ to } 0V, \\ & R_{SENSE} = 1K, \ R_{L} = 13\Omega \end{split}$		5	60 20	us
Current sense disable delay time from		V _{IN} =5V, V _{SEn} =5V to 0V,		5		
Current sense disable delay time from falling edge of SEn Current sense settling time from rising	t _{DSENSE1L}	$V_{IN}=5V, V_{SEn}=5V \text{ to } 0V,$ $R_{SENSE}=1K, R_{L}=13\Omega$ $V_{IN}=0V \text{ to } 5V, V_{SEn}=5 V,$			20	us

Note6: Except for the special test instructions, all electrical parameters are tested under T_A= +25°C. The minimum and maximum specification range of the specifications is guaranteed by the test, and the typical values are guaranteed by the design, test, or statistical analysis.

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

High-side driver with current sense analog feedback for automotive applications

Switching Status and Timing Relationship

Switching time and pulse skew

High-side driver with current sense analog feedback for automotive applications

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

High-side driver with current sense analog feedback for automotive applications

		la	ible 2. Truth tabl	е		
Mode	Conditions	IN	SEn	OUT	Current sense	Comments
Standby	All logic INs low	L	L	L	Hi-Z	Low quiescent current consumption
Normal	Nominal load connected;	L	See Table 3	L	See Table 3	
normai	T _j < 150℃	Н	See Table 3	Н	See Table 3	
	Overload or short to GND	L		L	See Table 3	
Overload	causing: $T_j > T_{TSD}$ or $\Delta T_j > \Delta T_{j_SD}$	Н	See Table 3	Н	See Table 3	Output cycles with temperature hysteresis
Undervoltage	V _{CC} <v<sub>USD</v<sub>	х	х	L	Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)
OFF-state	Short to V _{CC}	L	Cas Table 2	Н	See Table 3	
diagnostics	Open-Load	L	See Table 3	Н	See Table 3	External pull-up
Negative output voltage	Inductive loads turn-off	L	See Table 3	<0	See Table 3	

Table 2. Truth table

Table 3. Current sense output

SEn	MUV Chennel	Current sense output				
SEN	MUX Channel	Normal	Overload	OFF-state	Negative output	
L		Hi-Z				
Н	Channel diagnostic	$I_{SENSE} = I_{OUT}/K$	$V_{SENSE} = V_{SENSEH}$	$V_{SENSE} = V_{SENSEH}$	Hi-Z	

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

High-side driver with current sense analog feedback for automotive applications

Functional Description

Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically $175^{\circ}C$), it automatically switches off and the diagnostic indication is triggered.

Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region.

Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.

Diode (D_{GND}) in the ground line

A resistor (typ.R_{GND}=4.7K) should be inserted in parallel to D_{GND} if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. WS suggests to insert a resistor (R_{prot} =15K) in line both to prevent the micro-controller I/O pins from latching-up and to protect the HSD inputs. The value of these resistors is a compromise between the leakage current of micro-controller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of micro-controller I/Os.

CS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CS) delivering the current mirror of channel output current. The signal are routed through an analog multiplexer which is controlled by mean of SEn pin, according to the address map in CS multiplexer addressing Table.

Current monitor

When current mode is selected in the CS, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage VSENSEH

WINSEM

High-side driver with current sense analog feedback for automotive applications

The current delivered by the current sense circuit, I_{SENSE} can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE}, allowing continuous load monitoring and abnormal condition detection.

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations.

Current provided by CS output: $I_{SENSE} = I_{OUT}/K$

Voltage on R_{SENSE} : $V_{SENSE} = R_{SENSE} * I_{SENSE} = R_{SENSE} * I_{OUT}/K$ Where:

VSENSE is voltage measurable on RSENSE resistor

I_{SENSE} is current provided from CS pin in current output mode

High-side driver with current sense analog feedback for automotive applications

Package Outline ESOP-8L bl E2 BASE METAL DI WITH PLATING SECTION B-B 0.25 E1 0 H Ē + B B Γ MILLIMETER

CVMDOI			
SYMBOL	MIN	NOM	MAX
A			1.65
A1	0.05		0.15
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39		0.47
b1	0.38	0.41	0.44
С	0.20		0.24
c1	0.19	0.20	0.21
D	4.80	4.90	5.00
D1		3.10REF	
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
E2		2.21REF	
е		1.27BSC	
h	0.25		0.50
L	0.50	0.60	0.80
L1		1.05REF	
θ	0		8°

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel : 0755-82506288 Fax: 0755-82506299

High-side driver with current sense analog feedback for automotive applications

WINSEMI

CONTACT

Winsemi Microelectronics Co., Ltd.

ADD: Room 3101-3102, 31F, Building 8A, Shenzhen International Innovation Valley, Nanshan District, Shenzhen, P.R. China.

Post Code : 518040

Tel : 86-0755-82506288

Fax: 86-0755-82506299

Website : www.winsemi.com